

California Water Plan

Rich Juricich, California Department of Water Resources

Acknowledgements

- Evan Bloom, RAND Corporation
- Dr. David Groves, RAND Corporation
- Dr. Brian Joyce, Stockholm Environment Institute
- Dr. David Purkey, Stockholm Environment Institute
- Dr. Andy Draper, MWH
- Dr. Mohammad Rayej, DWR
- Dr. David Yates, National Center for Atmospheric Research

Managing an Uncertain Future

Risk, Uncertainty, and Sustainability

Water Policy Questions Addressing a Changing Climate

- ♦ What is the range of potential future climate between now and 2050? What are the ranges of other key uncertainties (demographics, land-use) over the same time period.
- How does a changing climate effect policy outcomes? To what climate conditions is the system vulnerable?
- How can different water management strategies and response packages increase resilience to changing climate?

What are the key tradeoffs among different strategies?

Plan of Study Components

Uncertain Factors (X) and Scenarios	Management Strategies (L) and Response Packages		
 Climate Population Employment Housing density 	 Current Management Additional strategies Agricultural water use efficiency Urban water use efficiency New surface storage Conjunctive management & groundwater storage Recycled municipal water Meeting additional flow targets and groundwater recovery goals 		
Models (R)	Performance Metrics (M)		
 UPLAN SWAP Statewide Model Central Valley Model 	 Urban Supply Reliability Agricultural Supply Reliability Reliability of instream flow requirements and targets Groundwater levels 		

System is Evaluated Against an Ensemble of Future Climate Scenarios

- Repeat of historical climate patterns
- Historical climate patterns with intensified drought
- Historical climate patterns with increasing temperature trend
- Downscaled global climate models

Five Offsets of Historical Climate Build Understanding of Vulnerability to Timing Of Droughts

Update 2013
California Water Plan

5 offsets evaluated

Overlaying Temperature Trend Isolates Effects of Warming Climate

Average
Warming by
12 climate
models

Downscaled Climate Simulations Reflect Uncertainty in Future Climate Forecasts

Showing projections from 6 of 12 climate simulations

Ensemble of Climate Scenarios Represents Wide Range of Potential Futures

- 12 GCM/BCSD derived
- 5 Historical (various
- drought (various offsets)
- 5 Historical w/ temp trend (various offsets)

Water Management Models Evaluate System Across Many Scenarios

Statewide Model

- Statewide
- Evaluation of monthly water demands by hydrologic region
- Reflect demographic and climate uncertainty

Both models built in userfriendly modeling environment to support collaboration

Central Valley Model

- Sacramento, San Joaquin, and Tulare Lake hydrologic regions
- Simulation of monthly demand, supplies, and management under uncertainty
- Evaluation of water management strategies

Central Valley Model Estimates Future System Performance

- Urban unmet demand
 - o Reliability
 - Magnitudes of shortages

- Agricultural unmet demand
 - o Reliability
 - Magnitudes of shortages

- Environmental performance
 - Reliability of meeting In-stream Flow Requirements

Current Management System Evaluated Under Many Plausible Futures

Growth Scenarios		Climate Scenarios		Total Futures
3 population X 3 urban densities	5 Historical ISM			
	5 Historical Drought			
	5 Historical Drought + Steady Warming	<u>=</u>	243	
	12 Downscaled Climate Model			

Range of Supply Reliability Under Current Management Varies Across Future Climate Conditions

Agricultural Reliability in San Joaquin HR Vulnerable to Warming and Drying Future Conditions

Agricultural Reliability in Tulare Lake HR Vulnerable to All But Wettest Climate Scenario

Key Results from Vulnerability Analysis

- Sacramento River hydrologic region generally resilient to range of climate futures
- ◆ The San Joaquin River hydrologic region vulnerable to warming and drying conditions.
- ◆ Tulare Lake hydrologic region agriculture vulnerable to all but the wettest futures
- Groundwater conditions vulnerable to similar conditions

Increased Agriculture and Urban Water Use Efficiency Improves Outcomes, Even in Most **Challenging Futures**

Continuing Analysis Evaluates Response Packages

- Evaluates ability of alternative portfolios management strategies to add resilience to the system
- Compares performance of response packages under most stressing climate conditions
- Considers tradeoffs between robustness and cost

Revised Update 2013 Scoping & Deliverables

Contact Information

